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Summary. How do robustness and energy econ-
omy in walking trade-off with each other? We ad-
dress this question using concepts from Viability
theory and a simple point-mass model of walking.
For this model, we find all states and next-step
controls such that a given desired speed can be
reached without falling. We use the results to find
a walking controller for Cornell Ranger that is, in
some way, maximally robust and also provides en-
ergy economy. Also, our results suggest that tak-
ing larger steps is generally advantageous to cancel
perturbations.

Introduction. A good walking robot has to be
robust, i.e. able to avoid falling in most practical
situations, and also use little energy to walk. How-
ever, no robot to-date is both robust (as Boston
Dynamics’ robots) and energy-effective (as Cornell
Ranger [1]). So what are the trade-offs between
these, and possibly other, desired characteristics
of walking? Our goal here is to help understanding
of such trade-offs and use this to help the design
of robust walking controllers.

One approach is to assess all feasible robotic
states with respect to different objectives. This
would show areas in the state space that are more
beneficial to be at with respect to, say, robustness
or energetics. This approach is in the spirit of
Viability theory [2], where one of the key concepts
is the viability kernel, the set of all states of the
system from which a failure can be avoided.

Here we use viability theory concepts with a
simple model of walking, the Inverted Pendulum
(IP) in 2D [3]. We use the results to design a ro-
bust controller for a simple model of Ranger.

Background concepts. We study walking us-
ing discrete step-to-step dynamics. We define a
step to start at (the Poincaré section to be at)
mid-stance, where the stance leg is vertical.

Our primary tool of analysis is controllable and
extended controllable regions [4]. Controllable re-
gions are areas in the state space. For a given mo-
tion goal, such as walking at a given speed, they
show from which states the robot can, using fea-
sible controls, reach the goal in one, two, or more
steps and without falling. The n-step controllable
region Cn is the set of all states from where this

can be done in n steps or fewer. The limiting re-
gion C∞ is all states from which the target can be
reached eventually; C∞ is usually almost equal to
the viability kernel of the system [5].

Extended controllable regions show specific con-
trols for the next step that allow the robot to reach
the target. The extended n-step controllable re-
gion C̄n is all combinations (q, u) of states q and
next-step controls u, such that the robot can reach
the target within n steps in total. The limiting re-
gion C̄∞ is all states and next-step controls so that
the target can be reached eventually.

Planar IP model. We model Ranger with the
IP model in 2D. The model has two rigid massless
legs and a point-mass at the hip. The swing leg
can be instantaneously placed to any desired posi-
tion, thus determining the step length. Collisions
are assumed instantaneous and there is no dou-
ble stance. Just before the collision an impulsive
push-off is applied along the trailing leg.

The model has one state variable at mid-stance,
velocity v, and two controls per step, the step size
xst and push-off magnitude p. We only consider
motions forward, only walking (no flight), and that
the robot reaches mid-stance at each step. Vio-
lation of these requirements is regarded as a fail-
ure. As a proxy for actuator limitations in Ranger,
we also impose an upper bound on the push-off,
p<pmax, and a lower bound on step-time, time
from mid-stance to heel-strike (a proxy for limited
hip torque in Ranger), tst>tst,min> 0. We use
rough estimates for pmax and tst,min from simula-
tions of a full model of Ranger [1]. We also bound
the largest physically feasible step, xst<xmax.

The extended controllable regions of the IP
model are three-dimensional (one state and two
control variables). For ease of presentation, we
only show in Fig. 1b projections C̄xst

n of these
regions onto the coordinate plane (v, xst); C̄

xst
n

is all velocities and next step-size controls such
that, with proper push-offs, the target is reachable
within n steps. The target speed vt corresponds to
Ranger’s 65 km walk and is approximately energy-
optimal speed of walking for Ranger. For velocities
and with step-sizes outside C̄xst

n the robot fails.
Projections of C̄xst

n onto the velocity axis are the
controllable regions Cn in Fig. 1a.
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Figure 1: n-step controllability of the IP model.

Results: robust walking controller. We il-
lustrate the design of the step-size controller here;
the push-off controller design is similar, see [5].

A viable step-size controller can be defined by a
function of mid-stance speed v whose graph is en-
tirely inside the region C̄xst

∞ , e.g. as in Fig. 2. We
want a controller (a curve inside C̄xst

∞ ) that pro-
vides maximum robustness and also convergence
to the desired target trajectory.

Robustness. We model various disturbances and
errors as random changes to the robot speed v and
step size xst. If such random changes move the
point (v, xst) outside the region C̄xst

∞ , the robot
fails. Hence, we model robustness as distance to
the boundary of C̄xst

∞ : for points (v, xst) that are
closer to the boundary, it is more likely for the
robot to fail after a disturbance. Thus, robust
controllers are those farther inside the region C̄xst

∞ .

Convergence. We look at how much closer the
robot gets to the target after each step. We look at
the ratio νx of the error in speed after one step to
the initial error. Fig. 2 shows a color map of νx for
all viable v and xst and assuming the best viable
push-off: lighter areas signify faster convergence
and darker areas slower convergence or divergence
from the target.

Thus, the desired step-size controller curve is
inside C̄xst

∞ (viability), farther from the bound-
aries of C̄xst

∞ (robustness), and in lighter areas of
C̄xst

∞ (convergence); it also has to pass through
the target (energy-optimal nominal trajectory).
We ‘heuristically’ pick the controller shown in
Fig. 2: it is an absolute-value function whose right
branch is approximately parallel to the boundary
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Figure 2: Robust step-size controller for Ranger.

of C̄xst
∞ . With this controller, and a similarly-

designed push-off controller, the robot tolerates
errors of up to 48% in speed and 24% in step-size,
and has an acceptable rate of convergence.

Note that our controller always prefers steps
larger than the nominal, suggesting an advantage
of taking larger steps for disturbance rejection.

Work in progress. The controller in Fig. 2 is
manually picked and does not explicitly account
for energy economy. Currently we are working on
defining, and solving, a more formal optimization
problem that accounts for both robustness and en-
ergetic cost. We will also consider different control
horizons, i.e. number of steps to reach the target,
thus accounting for the convergence speed.

We hope that the resulting optimal controller
will help to better understand the trade-offs in
bipedal walking, and also will further justify our
‘Two steps is enough’ result [4].
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